
Core 3 Module Revision Sheet

The C3 exam is 1 hour 30 minutes long and is in two sections.

Section A (36 marks) 5 – 7 short(ish) questions worth no more than 8 marks each.

Section B (36 marks) 2 questions worth approximately 18 marks each.

You are allowed a graphics calculator.

Before you go into the exam make sure you are fully aware of the contents of the formula booklet
you receive. Also be sure not to panic; it is not uncommon to get stuck on a question (I’ve
been there!). Just continue with what you can do and return at the end to the question(s)
you have found hard. If you have time check all your work, especially the first question you
attempted. . . always an area prone to error.

J MS

1. Proof

• There is not a lot for me to say other than read the chapter in the book. It’s very short!
I’ll do a few examples here. I would make sure you know how to prove

√
2 is irrational

and know how to extend it to
√
3 etc.

1. Prove that no square number ends in an 8. Exhaustion: If a number ends with the
digit one, then the square ends in one. [2 ⇒ 4], [3 ⇒ 9], [4 ⇒ 6],. . . , [9 ⇒ 1]. None
of them ended in eight, so we have proved the original assertion.

2. The value of n2 + n + 11 is always prime. Counter-example: When n = 11 the
expression is not prime (divisible by 11).

3. The sum of five consecutive numbers is divisible by five. Proof by direct argument:
Let the first of the five numbers be n. Therefore the sum of the numbers is

n+ (n+ 1) + (n+ 2) + (n+ 3) + (n+ 4) = 5n+ 10.

When we divide this by five we obtain n+ 2. This is always an integer since n is an
integer. Therefore we have proved the assertion.

2. Natural Logarithms & Exponentials

• Know that e is a special number in mathematics. It is approximately 2.7182818284 . . .
and it is irrational (i.e. it can’t be expressed as a fraction; similarly to π).

• If the base of a logarithm is e then we call it a ‘natural logarithm’. Written loge x ≡ lnx.

• We already know that logarithms and exponentials are inverses of each other with the
relationships

log10(10
x) ≡ x and 10log10 x ≡ x.

The same is true for natural logarithms and exponents of e;

ln(ex) ≡ x and elnx ≡ x.
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• All the laws of logarithms from C2 are true for natural logarithms (e.g. ln ab = ln a+ln b).
For example make a the subject of the following equation (a few steps missed out):

ln(a− 1)− ln(a+ 1) = b

ln

(

a− 1

a+ 1

)

= b

a− 1

a+ 1
= eb

a(1− eb) = 1 + eb

a =
1 + eb

1− eb
.

• All of the techniques covered in C2 for modelling certain experiments can also be done
with natural logarithms.

y = aekx

ln y = ln(aekx)

ln y = kx+ ln a.

So we plot ln y against x and we use the fact that the gradient is k and the y-axis intercept
is ln a. Practice these questions!

3. Functions

• A function is a one-to-one or a many-to-one mapping. There are also many-to-many and
one-to-many mappings, but these are not functions.1 For a function, for every value you
feed into the function you obtain one (and only one) value out.

• The domain of a function y = f(x) is all the possible values of x the function can take.
For example the domain of y =

√
x− 4 is x > 4. In other words all the inputs the function

can take.

• The co-domain of a function is all the possible outputs. That is all the possible values of
f(x). So for y = −x2 + 5 the co-domain is y 6 5. The range of a function is the set of all
outputs actually mapped to.

• Functions are transformed as follows

Function Graph Shape

f(x) Normal Graph
2f(x) Graph stretched by a factor of 2 away from the x-axis

i.e. every value of f(x) in the original graph is multiplied by 2
f(2x) Graph squeezed by factor of 2 towards the y-axis
3f(4x) Graph squeezed by factor of 4 towards the y-axis followed by stretch-

ing by a factor of 3 away from the x-axis
f(x) + 6 Graph moved vertically up 6 units
f(x)− 6 Graph moved vertically down 6 units
f(x+ 4) Graph moved 4 units to the left

f(x− 6) Graph moved 6 units to the right

f(x− 6) + 9 Graph translated 6 units to the right and 9 units up. This is a trans-
lation and can be expressed as

(

6
9

)

where
(

change in x

change in y

)

−f(x) Graph reflected in the x-axis
f(−x) Graph reflected in the y-axis

1See top of page 23 to see how to see what type of mapping a graph is; think about horizontal and vertical
lines.
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• When faced with compound transformations it sometimes matters which order you carry
out the transformations. In the example of 2f(x− 3) it doesn’t matter because you end
up with the same result both ways. However with f(2x + 10) you get a different result
depending on the order you carry out the slide of 10 left and compression towards the
y-axis. In this case you should do the opposite of what you expect. You do the slide first
and then the compression.

• If f(x) = f(−x) then the function is called an even function. An even function is one
where the y-axis is a line of symmetry. Examples are

f(x) = cos x since f(−x) = cos(−x) = cos x = f(x),

g(x) = x2 + 1 since g(−x) = (−x)2 + 1 = x2 + 1 = g(x).

• If −f(x) = f(−x) then the function is called an odd function. An odd function is one
where the function is unchanged if you rotate it 180◦ around the point (0, 0). Examples
are

f(x) = sinx since f(−x) = sin(−x) = − sinx = −f(x),

g(x) = x3 since g(−x) = (−x)3 = −x3 = −g(x).

• Note that f(g(x)) is not usually the same as g(f(x)). For example if f(x) = x2 and
g(x) = x + 1 then f(g(x)) = f(x + 1) = (x + 1)2 = x2 + 2x + 1. Contrast this with
g(f(x)) = g(x2) = x2 + 1.

• Sometimes you will be asked to describe a quadratic of the form ax2 + bx + c in terms
of f(x) = x2. It is often useful to complete the square. Very quickly I will go through a
couple of examples of how to do this:

x2 + 10 ⇒ Clearly just f(x) + 10.
x2 + 6x+ 10 ⇒ Complete square to get (x+3)2 − 9 + 10 = (x+3)2 + 1 so it is

f(x+ 3) + 1, which is the translation
(

−3
1

)

of x2.
2x2 + 16x+ 1 ⇒ Complete square to get 2(x + 4)2 − 31 so it is 2f(x + 4) − 31,

which is a stretch of factor 2 away from the x-axis, followed by
a translation

(

−4
−31

)

of x2.

• To find the inverse of a function you swap round the x and the y and make y the subject
again. This will be the inverse of the original function. Its graph will be the reflection of
the original in the line y = x. For example find the inverse of y =

√
x3 + 2 gives

y =
√

x3 + 2 ⇒ x =
√

y3 + 2 ⇒ y =
3
√

x2 − 2.

• A function only has an inverse if it is a one-to-one mapping. If the original function is
a many-to-one function (e.g. y = x2 or any of the trig functions) you must restrict its
domain to make it a one-to-one mapping (e.g. for y = x2 restrict domain to x > 0). See
example 3.9 on page 43 for an excellent exposition on how the domain and co-domain are
related between a function and its inverse.

• The trig functions all have inverses if we restrict the domain. The conventional restrictions
to allow inversion are

Function Domain Domain

y = sinx −90◦ 6 x 6 90◦ −π
2 6 x 6 π

2
y = cos x 0◦ 6 x 6 180◦ 0 6 x 6 π

y = tan x −90◦ 6 x 6 90◦ −π
2 6 x 6

π
2
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• The modulus function you have met before. It makes everything you put into it positive.
For example |4| = 4 and | − 6| = 6. The best way of handling equations/inequalities in-
volving the modulus function is to graph the left and right sides of the equation/inequality
and find the intersects by way of solving the equations. For example solve x+3 > |2x+1|.
First plot both to find

-2 -1 1 2 3

1

2

3

4

5

6

7

Then we solve x+3 = 2x+1 to find x = 2 and solve x+3 = −2x−1 to find x = −4
3 . Putting

this all together and by looking at the graph we find the overall solution is −4
3 6 x 6 2.

4. Techniques For Differentiation

Chain Rule

• The chain rule is incredibly important! It states that

dy

dx
=

dy

du
× du

dx
.

This seems obvious from the way that differentials are written, but remember that they
should not be thought of as fractions. It can be applied as follows to the example y =
(x4 + x)10. Let u = x4 + x, so

y = u10 u = x4 + x

dy

du
= 10u9

du

dx
= 4x3 + 1.

Therefore dy
dx = dy

du × du
dx = 10u9 × (4x3 + 1) = 10(4x3 + 1)(x4 + x)9.

• The above method works all the time but it is a little slow. You will notice the general
result that if y = [f(x)]n then dy

dx = n[f(x)]n−1 × f ′(x). So we can just write down the

answer to similar problems. For example if y = (3x2 + 1)5 then dy
dx = 30x(3x2 + 1)4.

Product Rule

• Know that when y = u× v (where u and v are functions of x) we can differentiate it using
the product rule. It states that

dy

dx
= u

dv

dx
+ v

du

dx
.
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For example if y = x2(x3 − 1)3 then

dy

dx
= [2x× (x3 − 1)3] + [x2 × 3(x3 − 1)2 × 3x2]

= 2x(x3 − 1)3 + 9x4(x3 − 1)2

= x(x3 − 1)2[2(x3 − 1) + 9x3]

= x(x3 − 1)2(11x3 − 2).

Quotient Rule

• Very similar to the product rule is the quotient rule. It is used for functions of the form
y = u

v . It states

dy

dx
=

v du
dx − u dv

dx

v2
.

For example differentiating y = x3

x2+1 gives

dy

dx
=

(x2 + 1)× 3x2 − x3 × 2x

(x2 + 1)2
x2(x2 + 3)

(x2 + 1)2
.

Trigonometric Functions

• When using radians we can differentiate the trigonometric functions. The results are as
follows:

y = sinx y = cos x y = tanx

dy

dx
= cos x,

dy

dx
= − sinx,

dy

dx
= sec2 x.

One can derive the third result from the other two using the quotient rule and that
tan x ≡ sinx

cos x .

• You can also use these results along with the chain rule to differentiate functions like the
following; y = sin(x2 + 1) by letting u = x2 + 1 and y = (tan x)10 by letting u = tanx.

y = sin(x2 + 1) y = (tan x)10

dy

dx
= 2x cos(x2 + 1),

dy

dx
= 10 sec2 x(tan x)9.

Implicit Differentiation

• Given a function in the form y = f(x) we can differentiate it. Implicit differentiation
allows us to differentiate a function without making y the subject first. It uses the chain
rule that

d f(y)

dx
=

d f(y)

dy
× dy

dx
.

So all you do is differentiate the y bits with respect to y and then multiply by dy
dx . For

example differentiate y4 + x4 = sin y with respect to x. This gives

4y3
dy

dx
+ 4x3 = cos y

dy

dx
⇒ dy

dx
=

4x3

cos y − 4y3
.
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• Another example; find all the stationary points on the curve x2 + y2 + xy = 3. Differen-
tiating w.r.t. x we find

2x+ 2y
dy

dx
+ y + x

dy

dx
= 0 ⇒ dy

dx
= −2x+ y

2y + x
.

Stationary points are where dy
dx = 0 so solve

0 = −2x+ y

2y + x
⇒ y = −2x.

Substituting this back into the original equation we find

x2+(−2x)2+x(−2x) = 3 ⇒ x = ±1 ⇒ Points are (1,−2) and (−1, 2).

5. Techniques For Integration

Integration by Substitution

• Integration by substitution is a way of integrating by replacing the variable given to you
(usually x) and replacing it by another (usually u). These days the substitution you are
to use is given to you in the exam, but practice will get you better at spotting what to
substitute (usually the most complicated term in the integration or the denominator of a
fraction). For example

∫

x3(x4 + 1)7 dx we should use u = x4 + 1.

∫

x3(x4 + 1)7 dx u = x4 + 1

=

∫

x3u7 dx
du

dx
= 4x3

=

∫

x3u7
du

4x3
du

4x3
= dx

=
1

4

∫

u7 du

=
u8

32
+ c =

(x4 + 1)8

32
+ c.

We have effectively “used and abused” u to help us to get the answer. (Note: I have
been very sloppy in the above integration because I have mixed my x and u variables; you
shouldn’t really do this, but it makes the process of conversion clearer.)

• When dealing with definite integrals we need to also convert the limits of the integration
and there is no need to convert back to x at the end since all definite integrals are merely
numbers. For example

∫ 4

3
2x

√

x2 − 4 dx u = x2 − 4 x = 3 ⇒ u = 5

=

∫ 12

5
2xu1/2

du

2x

du

dx
= 2x x = 4 ⇒ u = 12

=

∫ 12

5
u1/2 du

du

2x
= dx

=

[

2

3
u3/2

]12

5

=20.3 (3sf).
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Exponentials

• Know the result
∫

eax dx = 1
ae

ax + c.

• We know that if y = ef(x) then dy
dx = f ′(x)ef(x). Therefore by reversal we find

∫

f ′(x)ef(x) dx = ef(x) + c.

For example2
∫

x3ex
4

dx =
1

4

∫

4x3ex
4

dx =
1

4
ex

4

+ c.

Integrals with Logarithms

• Know that
∫

1
x dx = lnx+ c.

• We know that if y = ln(f(x)) then dy
dx = f ′(x)

f(x) . Therefore by reversal we find

∫

f ′(x)

f(x)
dx = ln |f(x)|+ c.

For example3
∫

x3

x4 + 1
dx =

1

4

∫

4x3

x4 + 1
dx =

1

4
ln |x4 + 1|+ c.

Integrals with Trigonometric Functions

• Know the results
∫

cos ax dx =
1

a
sin ax+ c and

∫

sin ax dx = −1

a
cos ax+ c.

• Always be on the look out for integrals involving a mixture of trigonometric functions.
These are usually handled by means of a substitution. For example

∫

cos x(sinx)7 dx is
best handled by u = sinx to give 1

8(sin x)
8 + c.

• Also know the useful results (all derived from reverse chain rule)

∫

f ′(x) cos f(x) dx = sin f(x) + c and

∫

f ′(x) sin f(x) dx = − cos f(x) + c.

For example
∫

x3 cos(x4) dx = 1
4 sin(x

4) + c.

Integration by Parts

• When an integral is made up of two ‘bits’ then we can sometimes use integration by parts.
It states

∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx.

2This could also have been evaluated (more slowly) by a substitution of u = x
4 which would then have reduced

to
∫
x
3
e
x
4

dx = 1

4

∫
e
u

du = 1

4
e
x
4

+ c.
3Again, this could also have been evaluated by the substitution u = x

4 + 1.
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So you will need to decide which ‘bit’ of the integral you will need to differentiate and
which ‘bit’ to integrate. For example in

∫

x sinx dx it is quite clear that we will need to
differentiate the x ‘bit’ and integrate the sinx ‘bit’.

∫

[x][sin x] dx = [x][− cos x]−
∫

[1][− cos x] dx

= −x cos x+ sinx+ c.

(Don’t use the square brackets when you do it; I only used it to show where everything
comes from.)

• Another example (this time a definite integral)

∫ 2

0
xe2x dx =

[

1

2
xe2x

]2

0

−
∫ 2

0

1

2
e2x dx

=

[

1

2
xe2x

]2

0

−
[

1

4
e2x

]2

0

=
(

e4 − 0
)

−
(

e4

4
− 1

4

)

=
3e4

4
+

1

4
.
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